Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System Design

نویسندگان

  • Jium-Ming Lin
  • Po-Kuang Chang
چکیده

This research integrated a MEMS electrostatic driven micro-probe and a laser Doppler vibrometer for non-contact vibration mode scanning probe microscope system design. The microprobe tip was placed in perpendicular to the sample surface, and the built-in capacitor on the microprobe was excited to vibrate by a sinusoidal drive voltage to generate Coulomb electrostatic force. The applied frequency is right at the structure natural resonant frequency of the microprobe. Then let the sample carried by a Z-stage move up. When the sample gets closer to the microprobe, the Van Der Waal’s force between the sample and microprobe would become larger, and the microprobe vibration amplitude would be reduced, and which can be determined by a laser Doppler vibrometer. Since the probe vibration amplitude is proportion to the distance between the probe tip and the sample surface. Thus one can detect the sample surface profile, by moving the probe tip at a constant height, and using a laser Doppler vibrometer to obtain the topography with the amplitudes of microprobe vibration history. The accuracy of the proposed system is about 10 nanometers with a gauge meter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Electromechanical Analysis of MEMS Variable Gap Capacitors

This paper presents a comprehensive case study on electro-mechanical analysis of MEMS[1] variable capacitors. Using the fundamental mechanical and electrical equations, static and dynamic behaviors of the device are studied. The analysis is done for three different modes, namely: dc (static mode), small signal ac and large signal regime. A complete set of equations defining dynamic behavior of ...

متن کامل

Fractional Order Control of Micro Electro-Mechanical Systems

This paper addresses the problem of the fractional sliding mode control (FSMC) for a MEMS optical switch. The proposed scheme utilizes a fractional sliding surface to describe dynamic behavior of the system in the sliding mode stage. After a comparison with the classical integer-order counterpart, it is seen that the control system with the proposed sliding surface displays better transient per...

متن کامل

Fractional Order Control of Micro Electro-Mechanical Systems

This paper addresses the problem of the fractional sliding mode control (FSMC) for a MEMS optical switch. The proposed scheme utilizes a fractional sliding surface to describe dynamic behavior of the system in the sliding mode stage. After a comparison with the classical integer-order counterpart, it is seen that the control system with the proposed sliding surface displays better transient per...

متن کامل

Analysis and wafer-level design of a high-order silicon vibration isolator for resonating MEMS devices

This paper presents the analysis and preliminary design, fabrication, and measurement for mechanical vibration-isolation platforms especially designed for resonating MEMS devices including gyroscopes. Important parameters for designing isolation platforms are specified and the first platform (in designs with cascaded multiple platforms) is crucial for improving vibration-isolation performance a...

متن کامل

Micromechanical Structures for Photonic Crystal Waveguide Switches

We report design and fabrication process of MEMS (Micro Electro Mechanical Systems) actuators for a new type of optical switch integrated with photonic crystal (PhC) waveguides. Thin film poly-silicon electrostatic microactuator (either a cantilever or a bridge style) is placed over a PhC waveguide to induce optical modulation by means of mechanical motion in the evanescent fields. For low volt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009